Rust Macro

4gboframram

May 16, 2022

LIBRARY

1 Getting Started 1
1.1 Introduction L e e e e e e e e e 1
1.2 Library Features e e e e e e 1
1.3 Usage . . . o oo e e e e e e 1
1.4 Where to 20 NeXt? o it e e e e e e e e e e e e 3
2 How it Works 5
2.1 ExpandMacros- The Main Entry Point L o 5
2.2 MacroExpander - The Import Hook Itself 5
3 API Reference 7
3.1 rust_macro.hooK e e e e e e 7
3.2 rust_macro.util . oL oL oL e e e e e e e e e 8
3.3 rust_macro.builtins e e e e e e e 10
4 Util 11
Python Module Index 13
Index 15

CHAPTER
ONE

GETTING STARTED

1.1 Introduction

Many low-level languages have a concept of macros that allow users to not have to write the same code over and over
again. In Python, however, there isn’t such a feature.

Why would anyone want macros in Python?

 Python is a very dynamic language and can be slow at times because of the overhead of calling the same function
over and over

* You might want to add inline parsing of a language like SQL to remove runtime overhead of parsing a literal
* Times you want to call a function before a script is run

e When you want to have access to an expression and its result at the same time in a safe way that doesn’t have
massive runtime overhead (eg. a testing library)

1.2 Library Features

* A convenient way to provide import-time token generation and substitution through macros inspired by the Rust
programming language

¢ An import hook that uses no external or platform-specific dependencies that can provide said functionality on
any modern and compliant Python implementation running on any system

* Tools for manipulating tokens and creating usable macros in a way that is more clear than the Python standard
library

* A commandline utility that automatically runs the import hook

1.3 Usage

With Rust Macro, it is easy to use macros from another module. Just put # __use_macros__({modules}) on the
first line of the file, where modules is a comma-separated list of string literals that contain the names of the modules
you want to import from.

Note: The macro modules are imported in the exact same way as the standard Python import system except for a major
difference; all macros are automatically brought into the module’s macro namespace.

Macros can be then called within that same file with {name} ! ({tokens}).

Rust Macro

Example:

Listing 1: (file hello.py)

__use_macros__('rust_macro.builtins')

print(stringify! (Hello, World))

To run this file, there are 2 options. It can be run with python3 -m rust_macro hello.py or you can create another
file to import the module from like so:

Listing 2: (file main.py)

from rust_macro import ExpandMacros

with ExpandMacros():
import hello

Then you can simply run this main file by running python3 main.py

Note: The commandline utility approach sets the module’s name to __main__ so that scripts can work properly.

Both approaches are equally valid and usable, but the direct import approach is more embedable

Within the ExpandMacros context manager, all imported modules that have # __use_macros__(args) at the be-
ginning of the file will have all macros expanded. This goes until all children modules’ macros are expanded or until
an exception is raised.

1.3.1 Creating Your Own Macros

In a module that defines macros, a macro is nothing but a function that takes an List [Token] as a single parameter
and either returns an Iterable[Token] or a str.

When a str is returned, that string is then tokenized. It is not converted into a string literal.

To be able to export macros, define a variable named __macros__ in the module’s namespace that contains a mapping
of names to a callable.

Example:

from rust_macro.util import Token
from typing import List

def macro(tokens: List[Token]) -> str:
return "print('Hello, World!')"

__macros__ = {'macro': macro}

This file can then be used in an # __use_macros__ statement and gives access to a macro named macro

2 Chapter 1. Getting Started

Rust Macro

1.4 Where to go Next?

» For advanced usage, check out the api documentation.

1.4. Where to go Next? 3

Rust Macro

4 Chapter 1. Getting Started

CHAPTER
TWO

HOW IT WORKS

Warning: This section contains advanced information about how the library works internally that the average
user might not care about. If you don’t care how the library worls, you can skip this section and read the API
documentation.

2.1 ExpandMacros- The Main Entry Point

ExpandMacros is a context manager that has a single purpose - add the MacroExpander class to sys.path_hooks
to hook imports and remove MacroExpander fromsys.path_hooks when the user doesn’t want the hook anymore.
ExpandMacros does not contain any logic for hooking imports; it is all handled by MacroExpander

2.2 MacroExpander - The Import Hook ltself

Warning: It is not recommended to use this class directly unless you know exactly what you’re doing.

e MacroExpander is a subclass of importlib.abc.SourceLoader. SourcelLoader provides sensible de-
fault methods to load data from source code, but the method get_data(path) from imporlib.abc.
ResourceLoader is the most important.

* self.get_data(path) checks the file if the file contains # __use_imports__ and imports all of the modules.
Then, it gathers all of the macros that are defined in each module’s __macros__. If a module doesn’t have
__macros__, an Exception is raised. Then it calls self.recursive_expand on a tokenized version of the
file’s contents, which recursively calls self.expand_macros

e self.expand_macros(code: MutableSequence[Token]) expands all of the macros in the file based on
the keys in self.macros, calling the macro that processes the tokens, replacing the entire macro invokation
with the result.

* And then some importlib magic then turns the code from self.get_data() into the final module

Rust Macro

6 Chapter 2. How it Works

CHAPTER
THREE

API REFERENCE

The API is currently made up of 3 modules:
rust_macro.hook - The place where the magic happens
rust_macro.util - Utilities for working with tokens and creating macros

rust_macro.builtins - A bunch of useful default macros

Note: rust_macro exports all names from rust_macro.util and rust_macro.hook

3.1 rust_macro.hook

class rust_macro.hook.ExpandMacros

The main class that provides a context manager interface to the main import hook.

__enter__() — rust_macro.ExpandMacros

Enables macro expansion on import

Returns self

__exit__(exception_type, exception_value, exception_traceback, /) — None
Disables macro expansion on import
exception rust_macro.hook.MacroFindError (msg: str)
An Exception that is raised when a module does not define macros when another module expects it.
exception rust_macro.hook.MacroNotFoundError (name: str)
A subclass of NameError that is raised when a macro cannot be found in the current scope.
class rust_macro.hook.MacroExpander (fullname: str, path: str)

A subclass of importlib.abc. SourceLoader thatis responsible for processing macros in modules and loading
processed modules

Warning: Do not use this class unless you know exactly what you are doing. If you do use this class, then
do not call any of its methods directly. This class’s interface may change at any time and without warn-
ing. The only guarantee is the existence of the methods MacroExpander.get_data and MacroExpander.

get_filename and the class being a subclass of importlib.abc.SourceLoader. This class may also be
deprecated in the future.

Rust Macro

fullname: str = fullname
The full name of the module that self is responsible for loading

path: str = path

The path of the module that self is responsible for loading
macros: dict[str, Callable[[Iterable[Token]], Union[Iterable[Token], str]l]l] = {}

The mapping of names to macros that self uses to expand macros

add_macros (fullname: str) — None:
Update self’s macro mapping with the contents of the module {fullname}.__macros__.

Parameters fullname (str)— The full name of the module to import macros from
Raises
e MacroFindError — if the module at fullname does not have a __macros__ atribute
¢ ModuleNotFoundError — when the module path doesn’t exist
get_filename (fullname: str) — str
Gets the path of the file that self is responsible for loading.
Returns self.path
expand_macros (self, tokens: MutableSequence[Token]) — MutableSequence([7oken]

Expands all registered macros in the token list

raises MacroNotFoundError when there is an attempt to expand a macro that isn’t de-
fined in the current scope

recursive_expand (self, code: MutableSequence[Token], *, depth_limit: int = 50) —
MutableSequence[Token]

Recursively expands macros that are in the token list.
Raises

* MacroNotFoundError — when there is an attempt to expand a macro that isn’t defined in
the current scope

¢ MacroError — when the depth_limit is exceeded

get_data(filename: str) — str
Gets the source code for the final processed module.

Parameters filename (str) - the file path that is opened

3.2 rust_macro.util

class rust_macro.util.Token

Canonical tokenize.TokenInfo

A class that represents a token from the lexer. Iterables that yield these are taken in and returned by macros. This
class is the same as tokenize.TokenInfo in the standard library.

8 Chapter 3. API Reference

Rust Macro

type

Type int
The type of token. See the Python token module for all of the different options.

string

Type str

The text that the token contains

start

Type int
end

Type int
line

Type str

The line the token is located in
property exact_type
Type int
The exact type of token. See the Python token module for all of the different options.

rust_macro.util.splitargs(tokens: Iterable[Token], *, delimiter: str ="',") — List[List[Token]]

Splits a group of tokens into parts by a delimiter string

Example:

from rust_macro.util import tokenize_string, splitargs

tokens = tokenize_string("'Hello, World', Hello There")

args = splitargs(tokens, delimiter=',")

assert len(args) == 2

assert args[0][0].string == "'Hello, World'"

assert [i.string for i in args[1]] == ['Hello', 'There']

rust_macro.util.fix(text: str) — str

Fixes a some wonky text created by tokenize.untokenize

rust_macro.util.untokenize (tokens: Iterable[Token]) — str
Converts an interable of Tokens back into a string.

rust_macro.util.tokenize_string(s: str) — List[Token]:

Converts a string into its tokens

More may come soon!

3.2. rust_macro.util 9

https://docs.python.org/3/library/token.html
https://docs.python.org/3/library/token.html

Rust Macro

3.3 rust_macro.builtins

10 Chapter 3. API Reference

CHAPTER
FOUR

UTIL

* genindex
* modindex

e search

11

Rust Macro

12 Chapter 4. Util

PYTHON MODULE INDEX

r

rust_macro.hook, 7
rust_macro.util, 8

13

Rust Macro

14 Python Module Index

Symbols

__enter__QO (rust_macro.hook.ExpandMacros
method), 7

__exit__Q (rust_macro.hook.ExpandMacros method),
7

A

add_macros()
method), 8

(rust_macro.hook.MacroExpander

E

end (rust_macro.util. Token attribute), 9

exact_type (rust_macro.util. Token property), 9

expand_macros() (rust_macro.hook.MacroExpander
method), 8

ExpandMacros (class in rust_macro.hook), 7

F

fix () (in module rust_macro.util), 9
fullname (rust_macro.hook.MacroExpander attribute),
7

G

get_data(Q
method), 8

get_filename()
method), 8

(rust_macro.hook.MacroExpander

(rust_macro.hook.MacroExpander

L

line (rust_macro.util. Token attribute), 9

M

MacroExpander (class in rust_macro.hook), 7
MacroFindError, 7
MacroNotFoundError, 7
macros (rust_macro.hook.MacroExpander attribute), 8
module

rust_macro.hook, 7

rust_macro.util, 8

P

path (rust_macro.hook.MacroExpander attribute), 8

INDEX

R

recursive_expand () (rust_macro.hook.MacroExpander
method), 8
rust_macro.hook
module, 7
rust_macro.util
module, 8

S

splitargs() (in module rust_macro.util), 9
start (rust_macro.util. Token attribute), 9
string (rust_macro.util. Token attribute), 9

T

Token (class in rust_macro.util), 8
tokenize_string() (in module rust_macro.util), 9
type (rust_macro.util. Token attribute), 8

U

untokenize() (in module rust_macro.util), 9

15

	Getting Started
	Introduction
	Library Features
	Usage
	Creating Your Own Macros

	Where to go Next?

	How it Works
	ExpandMacros- The Main Entry Point
	MacroExpander - The Import Hook Itself

	API Reference
	rust_macro.hook
	rust_macro.util
	rust_macro.builtins

	Util
	Python Module Index
	Index

